A q-enumeration of alternating permutations
نویسنده
چکیده
A classical result of Euler states that the tangent numbers are an alternating sum of Eulerian numbers. A dual result of Roselle states that the secant numbers can be obtained by a signed enumeration of derangements. We show that both identities can be refined with the following statistics: the number of crossings in permutations and derangements, and the number of patterns 31-2 in alternating permutations. Using previous results of Corteel, Rubey, Prellberg, and the author, we derive closed formulas for both q-tangent and q-secant numbers. There are two different methods to obtain these formulas: one with permutation tableaux and one with weighted Motzkin paths (Laguerre histories).
منابع مشابه
A combinatorial proof for the enumeration of alternating permutations with given peak set
Using the correspondence between alternating permutations and pairs of matchings, we present a combinatorial proof for the enumeration of alternating permutations with given peak set. Moreover, we give a refinement according to the number of left to right maxima.
متن کاملEnumeration of snakes and cycle-alternating permutations
Springer numbers are analogs of Euler numbers for the group of signed permutations. Arnol’d showed that they count some objects called snakes, which generalize alternating permutations. Hoffman established a link between Springer numbers, snakes, and some polynomials related with the successive derivatives of trigonometric functions. The goal of this article is to give further combinatorial pro...
متن کاملThe Enumeration of Doubly Alternating Baxter Permutations
In this paper, we give an alternative proof that the number of doubly alternating Baxter permutations is Catalan.
متن کاملEnumeration of permutations by number of alternating descents
In this paper we present an explicit formula for the number of permutations with a given number of alternating descents. As an application, we obtain an interlacing property for the zeros of alternating Eulerian polynomials.
متن کاملAlternating, Pattern-Avoiding Permutations
We study the problem of counting alternating permutations avoiding collections of permutation patterns including 132. We construct a bijection between the set Sn(132) of 132-avoiding permutations and the set A2n+1(132) of alternating, 132avoiding permutations. For every set p1, . . . , pk of patterns and certain related patterns q1, . . . , qk, our bijection restricts to a bijection between Sn(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 31 شماره
صفحات -
تاریخ انتشار 2010